Recap
Quantum fluid model. charged bosons coupled to fin field $-\frac{1}{n q^{*}} \nabla\left(\frac{\Lambda}{2} \hat{j}^{2}\right)$

$$
i \hbar \partial_{+} y=\left\{\frac{1}{2 m}[-i \hbar \vec{D}-q \vec{A}]^{2}+q v\right]^{\psi}
$$

LWavefunction: $\psi \sim \sqrt{n} e^{i \theta}, a=$ charge carrier dy
L 1st London equation $\frac{\partial}{\partial t}(\wedge \bar{j})=\vec{E}-\frac{1}{n g} \vec{\nabla}\left(\frac{\Lambda}{2} \vec{j}^{2}\right)$
$L \Lambda=\frac{m}{q^{2} n} \sim$ inductance $\sqrt{\frac{\mu}{\Lambda}} \sim$ penetration depth
L Charge current $\bar{j} \sim g_{n}\left[\frac{\hbar}{m} \vec{\nabla} \theta-\frac{g}{m} \vec{A}\right]$
 L, Flux-phone $\partial_{+}^{c} \theta=-\frac{g U}{\hbar} \underbrace{c}_{\dot{\phi}_{\text {ext }}}$

Josephson relation

* We consider the superconducting current that can be established
 between two superconductors through a thin insulator
* We model this as a quantum tuned process through a potential barrier for the looper pairs, which wame with energy $E<U_{0}$
* We reek stationary solutions in absence of flux. We start w. $\bar{A}=0$

$$
E_{\psi}=\left[\frac{1}{2 m^{n}}\left(-i \hbar \nabla-g^{\prime}(A)^{2}+V_{0}\right] \psi\right.
$$

- Outside the barrier we assume a constant dy and uniform current

$$
\Lambda J_{0} \sim \frac{\hbar}{g} \frac{d \theta}{d x} \rightarrow \begin{aligned}
& \psi(x<-a) \sim \sqrt{n_{L}} \exp \left(i \theta_{L}(x)\right) \\
& \psi(x)+a) \sim \sqrt{n_{R}} \exp \left(i \theta_{R}(x)\right)
\end{aligned}
$$

- Between boundaries

$$
\left.\left.\frac{\hbar^{2}}{2 m^{4}} \frac{d^{2} \psi}{d x}=\left(u_{0}-E\right) \psi \rightarrow \psi(x)=C_{1} \cosh (x / \xi)+C_{2} \sinh (x / \xi)\right)_{\infty}\right\}=\sqrt{\frac{\hbar^{2}}{2 m\left(u_{0}-E_{0}\right)}}
$$

Josephson relation (2)
Matching boundary conditions $\psi(-a)=\sqrt{n_{L}} e^{i \theta_{L}}, \psi(+a)=\sqrt{n_{R}} e^{i \theta_{R}}$

$$
C_{1}=\frac{\sqrt{n_{L}} e^{i \theta_{L}}+\sqrt{n_{R}} e^{i \theta_{R}}}{2 \cosh (a / \xi)}, C_{2}=\frac{\sqrt{n_{R}} e^{i \theta_{R}}-\sqrt{n_{L}} e^{i \theta_{l}}}{2 \sinh (a / z)}
$$

$J_{s}=\frac{g^{*}}{m^{*}} \operatorname{Re}\left(-4^{*} i \hbar \nabla_{4}\right)=\frac{g^{*} \hbar}{m^{*} \xi} I_{m}\left(c_{1}^{*} c_{2}\right)=J_{c} \sin \left(\theta_{L}-\theta_{R}\right)$ un.j) ore along junction
$J_{c}=\Theta \frac{a^{*} \hbar}{\left.2 m^{*}\right\}} \frac{\sqrt{n_{2} n_{k}}}{\sinh (2 a / 3)}>0$ is the critics current below which tunneling is supt.
More generally, provided $\bar{\nabla} \times \bar{A} \times \bar{B}=0$, we can write
$\vec{J}=J_{c} \sin \varphi$ with the game invariant phase

$$
\varphi=\theta_{L}-\theta_{R}-\frac{2 \pi}{\Phi_{0}} \int_{L}^{R} \vec{\Delta} \cdot d \vec{l}
$$

Joseph son relation (3)

* Phase - wattage relations $\frac{\partial}{\partial t} \varphi=\frac{\partial}{\partial t} \theta_{R}-\frac{\partial}{\partial t} \theta_{R}-\frac{2 \pi}{\phi_{0}} \int_{L}^{R} \frac{\partial \bar{A}}{\partial t} \cdot d \bar{l}$

$$
\Phi_{0}=\frac{\left|g^{*}\right|}{h}
$$

$$
\begin{aligned}
\frac{\partial \varphi}{\partial t} & =-\frac{1}{\hbar}\left(\frac{\Lambda}{2 n}\left(J^{2}(-a)-J^{2}(+a)\right)\right)-\frac{1}{\hbar}\left[g^{y} v(-a)-g^{2} v(+a)\right]-\frac{2 n}{\Phi_{0}} \int_{L}^{R} \frac{\partial \bar{A}}{\partial t} \cdot d \vec{l} \\
& =\int_{L}^{R}\left[\frac{g^{*}}{\hbar} \vec{\nabla} v-\frac{2 n}{\Phi_{0}} \frac{\partial \vec{A}}{\partial t}\right] d \vec{l}=\frac{2 n}{\Phi_{0}} \int_{L}^{R}\left[-\vec{\nabla} v-\frac{\partial \dot{A}}{\partial t}\right] d \vec{l}=\frac{2 \pi}{\Phi_{0}} \int_{\text {electric potential }}^{\int} \vec{E} \cdot d \vec{l}
\end{aligned}
$$

* Circuit relations
voltage difference

$$
V_{L}-V_{R}
$$

Fhuxoid quantization (2)
Remember $\frac{\hbar}{q^{*}}=\frac{\hbar}{-2 e}=\frac{-\Phi_{0}}{27}$

$$
\begin{aligned}
& \oint_{c}(\Delta \vec{j}) \cdot d \vec{l}=\oint_{c} \frac{\hbar}{q^{*}} \nabla \theta \cdot d \vec{l}-\oint_{c} \vec{A} \cdot d \vec{l} \\
& \oint_{\gamma}(\Lambda \vec{j}) d \vec{l} \times\left(\frac{-2 n}{\phi_{0}}\right) \\
& \underbrace{}_{\oint_{\gamma} \nabla \varphi}=+\int_{\gamma} \nabla \theta \cdot d \vec{l}+\frac{2 n}{\phi_{0}} \int_{\gamma} \vec{A} \cdot d \vec{l} \\
& \oint_{\gamma} \nabla \theta \cdot d \vec{l}-\frac{2 n}{\Phi_{0}} \oint_{-\gamma} \vec{A} \cdot d \vec{l} \quad \Leftrightarrow 1
\end{aligned}
$$

\Leftrightarrow Definition of
saupe invariant phare
$\}$ choied naths

$$
\begin{aligned}
& \left.\left.\frac{\Phi_{0}}{2 n} \oint_{c} \nabla \bar{\nabla} \varphi d i=\Phi_{0} \times Z+\int_{\text {In }(c)} \bar{B} \cdot d \bar{s}\right)=\Phi_{\text {err }}\right\} \begin{array}{c}
\text { Throryh phave-fux relation } \\
\varphi=\Phi
\end{array} \\
& \phi=\frac{\Phi_{0}}{2 \pi} \cdot \varphi \\
& \oint_{c} \bar{\nabla} \phi \cdot d \bar{l}=\oint_{\text {ext }}=\Phi_{0} \cdot m \quad(m \in \mathbb{Z})
\end{aligned}
$$

Conventions

* Current is regarded in terms of positive charge.
* Such carriers flow for large to small electric potential

* On a capacitor, current plus lead to charge accumulation and establishment of a potential difference

- Note that the sense of the flow that charges the capacitor is opposite to that of the established is V

$$
I=\frac{d G}{d t}=C \dot{V} \text { * Note also that } V=\int_{A}^{13} E d x
$$

- On an inductor. a growth of current induce a potential that opposes the current (Lens's law)

$$
\rightarrow \substack{\frac{\rightarrow}{v}} \quad V=L \frac{d L}{d t}
$$

Applying the convention

* The sum of the currents going into capacitive elements must be equal to the sum of currents coming from inductive elements

$$
I_{\overrightarrow{b_{0}}}^{\text {cap }}=I_{\vec{b}}^{\text {ind }}
$$

$\begin{array}{lll}b \\ V V_{0}-V_{b}=L \frac{d l}{d t} & I d+\frac{+1+1}{-1} V_{V} & \left(V_{b}-V_{0}\right) \cdot C=Q \\ & \left(\dot{V}_{b}-\dot{V}_{0}\right) C=I\end{array}$
C flux variables: $\frac{\phi_{0}-\phi_{b}}{L}=\left(\ddot{\phi}_{0}-\ddot{\phi}_{0}\right) c \underset{\substack{\phi_{0}=0 \\ \text { granted }}}{\Rightarrow} \ddot{\phi}_{b}=-\frac{1}{L c} \phi_{b}$

Detailed rules

1) Draw the graph for your circuit and assing nodes to the intersections or connections
2) Define one flux variable for each node
3) Draw a directed subgraph (tree) starting from one node and running over all
4) Define branch fluxes as the flux difference between consecutive nodes on that tree
5) Assign branch fluxes to the remaining branches that close loops using fluxoid quantization $\quad \sum_{G} \delta \phi=\Phi_{\text {ext }}\left(+2 \pi m \Phi_{0} \approx 0\right)$
6) Write differential equations for each node
1. Capacitor $I=C \delta \ddot{\phi}$

$$
\sum \text { currents }=0
$$

7) Find Lagrangian and quantize

2. Inductor $I=\frac{1}{L} \delta \phi$
3. Junction $I=\frac{\Phi_{0}}{l_{j}} \sin (\delta \phi)$

Driven capacitor

Le assume

1) No trapped fluxes)
2) Grounded circuit $\phi_{0}=0$
3) Constant voltage due to source $V_{g} \Rightarrow \dot{\phi}_{B}=V_{S}$

$$
\begin{aligned}
& C \ddot{\phi}_{A}+\frac{1}{L} \phi_{A}=C_{g}\left(\dot{V}_{g}-\ddot{\phi}_{A}\right) \\
& \frac{d}{d t}\left[\left(C+C_{g}\right)\left(\dot{\phi}_{A}-\frac{C_{g}}{C+C_{g}} v_{g}\right)\right]=-\frac{1}{L} \phi_{A}
\end{aligned}
$$

$$
\mathcal{L}=\frac{1}{2} C_{\Sigma}\left(\dot{\phi}_{A}-\frac{C_{g}}{C_{\Sigma}} V_{g}\right)^{2}-\frac{1}{2 L} d_{A}^{2}
$$

$$
q=C_{\Sigma} \dot{\phi}_{A}-C_{g} v_{g}
$$

$$
H=\frac{1}{2 C_{I}}(g+\underbrace{\left.\frac{C_{g}}{C_{I}} V_{g}\right)^{2}}_{g_{g}}+\frac{1}{2 L} d_{A}^{2}
$$

Driven capacitor (2)

$$
\begin{aligned}
& \left\{=\frac{1}{2} C\left(\dot{\phi}_{A}\right)^{2}-\frac{1}{2 L}\left(\phi_{A}-L I_{g}\right)^{2}+\right.\text { constants } \\
& H=\frac{1}{2 C} g^{2}+\frac{1}{2 L}\left(\phi_{\Delta}-L l_{g}\right)^{2}
\end{aligned}
$$

